

Welcome to ANUGA’s documentation!

ANUGA (pronounced “AHnooGAH”) is open-source software for the simulation of the shallow water equation,
in particular it can be used to model tsunamis and floods.

ANUGA is a python 3 package with some C and Cython extensions (and an optional fortran extension).

ANUGA is developed at Geoscience Australia, Mathematical Sciences Institute
at the Australian National University and volunteers.

Althought ANUGA was created in a collaboration by Geoscience Australia
and Mathematical Sciences Institute at the Australian National University,
it is now developed and maintained by a community of volunteers.

Note

This project is under active development.

Contents:

	Background

	Installation
	Introduction

	Dependencies

	Ubuntu Install with MiniForge3

	Ubuntu Install with MiniForge3 and pip

	Ubuntu Install with MiniForge3 from github

	Installing GDAl on Ubuntu using apt and pip

	Installing on Ubuntu using apt and pip

	Windows 10 Install using ‘Ubuntu on Windows’

	Windows Installation using MiniForge

	Examples
	Simple Script Example

	Simple Notebook Example

	Simple Example using Create from Regions

	Example of Creating Domains with River Walls

	Merewether Flood Case Study Example

	Tsunami runup example

	Creating a Domain
	anuga.create_domain_from_regions

	Initial Conditions
	anuga.Domain.set_quantity

	Boundaries

	Evolve
	Evolving the Model

	Duration instead of finaltime

	Outputstep

	Start Time

	Start times with DateTime and Timezones

	Default zero time

	Useful Domain methods

	Operators

	Structures

	Reference
	Introduction

	Creating a Domain

	Classes Associated with the Domain

	Boundary Conditions

	Structures

Indices and tables

	Index

	Module Index

	Search Page

Background

Modelling the effects on the built environment of natural hazards such
as riverine flooding, storm surges and tsunami is critical for
understanding their economic and social impact on our urban
communities. Geoscience Australia and the Australian National
University are developing a hydrodynamic inundation modelling tool
called ANUGA to help simulate the impact of these hazards.

The core of ANUGA is the fluid dynamics object, called anuga.Domain,
which is based on a finite-volume method for solving the Shallow Water
Wave Equation. The study area is represented by a mesh of triangular
cells. By solving the governing equation within each cell, water
depth and horizontal momentum are tracked over time.

A major capability of ANUGA is that it can model the process of
wetting and drying as water enters and leaves an area. This means
that it is suitable for simulating water flow onto a beach or dry land
and around structures such as buildings. ANUGA is also capable
of modelling hydraulic jumps due to the ability of the finite-volume
method to accommodate discontinuities in the solution and the bed (using the
latest algorithms

To set up a particular scenario the user specifies the geometry
(bathymetry and topography), the initial water level (stage),
boundary conditions such as tide, and any operators that may
drive the system such as rainfall, abstraction of water, erosion, culverts
See section Operators for details of operators available in ANUGA.

The built-in mesh generator, called graphical_mesh_generator,
allows the user to set up the geometry
of the problem interactively and to identify boundary segments and
regions using symbolic tags. These tags may then be used to set the
actual boundary conditions and attributes for different regions
(e.g. the Manning friction coefficient) for each simulation.

Most ANUGA components are written in the object-oriented programming
language Python. Software written in Python can be produced quickly
and can be readily adapted to changing requirements throughout its
lifetime. Computationally intensive components are written for
efficiency in C routines working directly with Python numpy
structures.

The visualisation tool developed for ANUGA is based on
OpenSceneGraph, an Open Source Software (OSS) component allowing high
level interaction with sophisticated graphics primitives.
See cite{nielsen2005} for more background on ANUGA.

Installation

Contents

	Installation

	Introduction

	Dependencies

	Ubuntu Install with MiniForge3

	Ubuntu Install with MiniForge3 and pip

	Ubuntu Install with MiniForge3 from github

	Installing GDAl on Ubuntu using apt and pip

	Installing on Ubuntu using apt and pip

	Updating

	Windows 10 Install using ‘Ubuntu on Windows’

	Windows Installation using MiniForge

Introduction

ANUGA is a python package with some C extensions (and an optional fortran
extension). This version of ANUGA is run and tested using python 3.7 - 3.9

Dependencies

ANUGA requires python 3.X (X>6) and the following python packages:

numpy scipy matplotlib pytest cython netcdf4 dill future gdal \
pyproj pymetis triangle Pmw mpi4py pytz ipython meshpy Pmw pymetis utm

ANUGA is developed on Ubuntu and so we recommend Ubuntu as your production environment
(though ANUGA can be installed on MacOS and Windows using Miniconda or MiniForge)

Ubuntu Install with MiniForge3

A clean way to install the dependencies for ANUGA is to use Anaconda,
or Miniconda Python distributions by Continuum Analytics.

Using a conda installation has the advantage of allowing you to create multiple
python environments and is particularly
useful if you want to keep multiple versions of ANUGA

Indeed the most stable install is via the conda-forge channel
which is easily available using the Miniforge. In particular the installation of
the gdal and mpi4py modules are more stable.

These conda environments do not require administrative rights
to your computer and do not interfere with the Python installed in your system.

Install the latest version of Miniforge from https://github.com/conda-forge/miniforge or
use, for instance, wget to download the latest version via:

wget -O Miniforge3.sh "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
bash Miniforge3.sh

If you don’t have wget you can install it via:

sudo apt-get update -q
sudo apt-get install wget git

Once Miniforge is installed, we can now create an environment to run `anuga’.

Create a conda environment anuga_env (or what ever name you like):

conda update conda
conda create -n anuga_env python=3.8 anuga mpi4py
conda activate anuga_env

Note we have also installed mpi4py to allow anuga to run in parallel.
On some systems you may need to manually install mpi4py to match the version of mpi you are using.

This has setup a conda environment for anuga using python 3.8. (anuga has be tested on 3.7, 3.8. 3.9.)

We are now ready to use `anuga’.

You can test your installation via:

python -c "import anuga; anuga.test()"

Ubuntu Install with MiniForge3 and pip

Once you have a python environment it is also possible to install anuga via pip:

pip install anuga

You might need to run this command twice to push pip to install all the dependencies. And indeed
you will need to install gdal and mpi4py manually.

You can test your installation via:

python -c "import anuga; anuga.test()"

Ubuntu Install with MiniForge3 from github

Alternatively you can the most current version of anuga` from GitHub

git clone https://github.com/anuga-community/anuga_core.git
cd anuga_core
pip install -e .
python runtests.py

Remember, to use ANUGA you will have to activate the anuga_env environment
via the command:

conda activate anuga_env`

You might even like to set this up in your .bashrc file.

Installing GDAl on Ubuntu using apt and pip

ANUGA can be installed using pip, but a complication arise when installing
the gdal package.

First set up a python virtual environment and activate via:

python3 -m venv anuga_env
course anuga_env/bin/activate

Now we first need to install the gdal python package. First install the
gdal library, via:

sudo apt-get install -y gdal-bin libgdal-dev

We need to ascertain the version of gdal installed using the following command:

ogrinfo --version

THe version of gdal to install via pip should match the version of the library.
For instance on Ubuntu 20.04 the previous command produces:

GDAL 3.0.4, released 2020/01/28

So in this case we install the gdal python package as follows

pip install gdal==3.0.4

Now we complete the installation of anuga simply by:

pip install anuga

If you obtain errors from pip regarding “not installing dependencies”, it seems that that can be fixed by just
running the pip install anuga again

Installing on Ubuntu using apt and pip

You can install the anuga dependencies via a combination of the
standard ubuntu apt method and python pip install.

From your home directory run the following commands which will download anuga
to a directory anuga_core, install dependencies, install anuga and run the unit tests:

git clone https://github.com/anuga-community/anuga_core.git
sudo bash anuga_core/tools/install_ubuntu_20_04.sh

Note: Part of the bash shell will run as
sudo so will ask for a password. If you like you can run the package installs manually,
run the commands in the script anuga_core/tools/install_ubuntu_20._04.sh.

This script also creates a python3 virtual environment anuga_env. You should activate this
virtual environment when working with anuga, via the command:

source ~/anuga_env/bin/activate

You might like to add this command to your .bashrc file to automatically activate this
python environment.

Updating

From time to time you might like to update your version of anuga to the latest version on
github. You can do this by going to the anuga_core directory and pulling the latest
version and then reinstalling via the following commands:

cd anuga_core
git pull
pip install -e .

And finally check the newinstallation by running the unit tests via:
.. code-block:: bash

python runtests.py -n

Windows 10 Install using ‘Ubuntu on Windows’

Starting from Windows 10, it is possible to run an Ubuntu Bash console from Windows.
This can greatly simplify the install for Windows users.
You’ll still need administrator access though. First install an ubuntu 20_04 subsystem.
Then just use your preferred ubuntu install described above.

Windows Installation using MiniForge

We have installed anuga on windows using miniforge.

You can download MiniForge manually
from the MiniForge site https://github.com/conda-forge/miniforge:

Alternatively you can download and install miniforge via CLI commands:

Run the following powershell instruction to download miniforge.

Start-FileDownload "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Windows-x86_64.exe" C:\Miniforge.exe; echo "Finished downloading miniforge"

From a standard cmd prompt then install miniconda via:

C:\Miniconda.exe /S /D=C:\Py
C:\Py\Scripts\activate.bat

Install conda-forge packages:

conda create -n anuga_env python=3.8 anuga mpi4py
conda activate anuga_env

You can test your installation via:

python -c "import anuga; anuga.test()"

Examples

	Simple Script Example

	Simple Notebook Example

	Simple Example using Create from Regions

	Example of Creating Domains with River Walls

	Merewether Flood Case Study Example

	Tsunami runup example

Simple Script Example

Here we discuss the structure and operation of a
script called runup.py (which is available in the examples
directory of anuga_core.

This example carries out the solution of the shallow-water wave
equation in the simple case of a configuration comprising a flat
bed, sloping at a fixed angle in one direction and having a
constant depth across each line in the perpendicular direction.

The example demonstrates the basic ideas involved in setting up a
complex scenario. In general the user specifies the geometry
(bathymetry and topography), the initial water level, boundary
conditions such as tide, and any forcing terms that may drive the
system such as rainfall, abstraction of water, wind stress or atmospheric pressure gradients.
Frictional resistance from the different terrains in the model is
represented by predefined forcing terms. In this example, the
boundary is reflective on three sides and a time dependent wave on
one side.

The present example represents a simple scenario and does not
include any forcing terms, nor is the data taken from a file as it
would typically be.

The conserved quantities involved in the
problem are stage (absolute height of water surface),
\(x\)-momentum and \(y\)-momentum. Other quantities
involved in the computation are the friction and elevation.

Water depth can be obtained through the equation:

depth = stage - elevation

Outline of the Program

In outline, runup.py performs the following steps:

	Sets up a triangular mesh.

	Sets certain parameters governing the mode of operation of the model,
specifying, for instance, where to store the model output.

	Inputs various quantities describing physical measurements,
such as the elevation, to be specified at each mesh point (vertex).

	Sets up the boundary conditions.

	Carries out the evolution of the model through a series of time steps
and outputs the results, providing a results file that can be viewed.

The Code

For reference we include below the complete code listing for
runup.py. Subsequent paragraphs provide a
‘commentary’ that describes each step of the program and explains it
significance.

"""Simple water flow example using ANUGA

Water driven up a linear slope and time varying boundary,
similar to a beach environment
"""

#--
Import necessary modules
#--
import anuga

from math import sin, pi, exp

#--
Setup computational domain
#--
domain = anuga.rectangular_cross_domain(10, 10) # Create domain

#--
Setup initial conditions
#--
def topography(x, y):
 return -x/2 # linear bed slope
 #return x*(-(2.0-x)*.5) # curved bed slope

domain.set_quantity('elevation', topography) # Use function for elevation
domain.set_quantity('friction', 0.1) # Constant friction
domain.set_quantity('stage', -0.4) # Constant negative initial stage

#--
Setup boundary conditions
#--
Br = anuga.Reflective_boundary(domain) # Solid reflective wall
Bw = anuga.Time_boundary(domain=domain, # Time dependent boundary
 function=lambda t: [(0.1*sin(t*2*pi)-0.3)*exp(-t), 0.0, 0.0])

Associate boundary tags with boundary objects
domain.set_boundary({'left': Br, 'right': Bw, 'top': Br, 'bottom': Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep=0.1, finaltime=10.0):
 print (domain.timestepping_statistics())

Establishing the Domain

The very first thing to do is import the various modules, of which the
anuga module is the most important:

import anuga

Then we need to set up the triangular mesh to be used for the
scenario. This is carried out through the statement:

domain = anuga.rectangular_cross_domain(10, 5, len1=10.0, len2=5.0)

The above assignment sets up a \(10 \times 5\) rectangular mesh,
triangulated in a regular way with boundary tags
left, right, top or bottom.

It is also possible to set up a domain from “first principles”
using points, vertices and boundary via the assignment:

points, vertices, boundary = anuga.rectangular_cross(10, 5, len1=10.0, len2=5.0)
domain = anuga.Domain(points, vertices, boundary)

	where:
	
	points is a list giving the coordinates of each mesh point,

	vertices is a list specifying the three vertices of each triangle, and

	boundary is a dictionary that stores the edges on the boundary and associates
with each a symbolic tag. The edges are represented as pairs (i, j)
where i refers to the triangle id and j to the edge id of that triangle.
Edge ids are enumerated from 0 to 2 based on the id of the vertex opposite.

This creates an instance of the Domain class, which
represents the domain of the simulation. Specific options are set at
this point, including the basename for the output file and the
directory to be used for data:

domain.set_name('runup')
domain.set_datadir('.')

In addition, the following statement could be used to state that
quantities stage, xmomentum and ymomentum` are
to be stored at every timestep and elevation only once at
the beginning of the simulation:

domain.set_quantities_to_be_stored({'stage': 2, 'xmomentum': 2, 'ymomentum': 2, 'elevation': 1})

However, this is not necessary, as the above is the default behaviour.

Initial Conditions

The next task is to specify a number of quantities that we wish to
set for each mesh point. The class {Domain has a method
set_quantity, used to specify these quantities. It is a
flexible method that allows the user to set quantities in a variety
of ways – using constants, functions, numeric arrays, expressions
involving other quantities, or arbitrary data points with associated
values, all of which can be passed as arguments. All quantities can
be initialised using set_quantity. For a conserved
quantity (such as stage, xmomentum, ymomentum) this is called
an initial condition. However, other quantities that aren’t
updated by the evolution procedure are also assigned values using the same
interface. The code in the present example demonstrates a number of
forms in which we can invoke set_quantity.

Elevation

The elevation, or height of the bed, is set using a function
defined through the statements below, which is specific to this
example and specifies a particularly simple initial configuration
for demonstration purposes:

def topography(x, y):
 return -x/2

This simply associates an elevation with each point (x, y) of
the plane. It specifies that the bed slopes linearly in the
x direction, with slope \(-\frac{1}{2}\), and is constant in
the y direction.

Once the function topography` is specified, the quantity
elevation is assigned through the statement:

domain.set_quantity('elevation', topography)

NOTE: If using function to set elevation it must be vector
compatible. For example, using square root will not work.

Friction

The assignment of the friction quantity (a forcing term)
demonstrates another way we can use set_quantity to set
quantities – namely, assign them to a constant numerical value:

domain.set_quantity('friction', 0.1)

This specifies that the Manning friction coefficient is set to 0.1
at every mesh point.

Stage

The stage (the height of the water surface) is related to the
elevation and the depth at any time by the equation:

stage = elevation + depth

For this example, we simply assign a constant value to stage,
using the statement:

domain.set_quantity('stage', -0.4)

which specifies that the surface level is set to a height of \(-0.4\),
i.e. 0.4 units (metres) below the zero level.

Although it is not necessary for this example, it may be useful to
digress here and mention a variant to this requirement, which allows
us to illustrate another way to use set_quantity – namely,
incorporating an expression involving other quantities. Suppose,
instead of setting a constant value for the stage, we wished to
specify a constant value for the depth. For such a case we
need to specify that stage is everywhere obtained by adding
that value to the value already specified for elevation. We
would do this by means of the statements:

h = 0.05 # Constant depth
domain.set_quantity('stage', expression='elevation + %f' % h)

That is, the value of stage is set to h = 0.05 plus
the value of elevation already defined.

The reader will probably appreciate that this capability to
incorporate expressions into statements using set_quantity
greatly expands its power.

Boundary Conditions

The boundary conditions are specified as follows:

Br = anuga.Reflective_boundary(domain)
Bw = anuga.Time_boundary(domain=domain, f=lambda t: [(0.1*sin(t*2*pi)-0.3)*exp(-t), 0.0, 0.0])

The effect of these statements is to set up a selection of different
alternative boundary conditions and store them in variables that can be
assigned as needed. Each boundary condition specifies the
behaviour at a boundary in terms of the behaviour in neighbouring
elements. The boundary conditions introduced here may be briefly described as
follows:

	Reflective boundary: Returns same stage as in its neighbour volume but momentum
vector reversed 180 degrees (reflected).
Specific to the shallow water equation as it works with the
momentum quantities assumed to be the second and third conserved quantities.
A reflective boundary condition models a solid wall.

	Time boundary: Set a boundary varying with time.

Before describing how these boundary conditions are assigned,
we recall that a mesh is specified using
three variables points, vertices and boundary.
In the code we are discussing, these three variables are returned by
the function rectangular_cross. The example given in
Section ref{sec:realdataexample} illustrates another way of
assigning the values, by means of the function
create_domain_from_regions.

These variables store the data determining the mesh as follows. (You
may find that the example given in Section ref{sec:meshexample}
helps to clarify the following discussion, even though that example
is a non-rectangular mesh.):

	points` stores a list of 2-tuples giving the
coordinates of the mesh points.

	vertices stores a list of 3-tuples of
numbers, representing vertices of triangles in the mesh. In this
list, the triangle whose vertices are points[i]},
:code:`points[j], points[k] is represented by the 3-tuple (i, j, k).

	The variable boundary is a Python dictionary that
not only stores the edges that make up the boundary but also assigns
symbolic tags to these edges to distinguish different parts of the
boundary. An edge with endpoints points[i] and
points[j] is represented by the 2-tuple (i, j). The
keys for the dictionary are the 2-tuples (i, j) corresponding
to boundary edges in the mesh, and the values are the tags are used
to label them. In the present example, the value boundary[(i, j)]
assigned to (i, j)] is one of the four tags
left, right, top or bottom,
depending on whether the boundary edge represented by (i, j)
occurs at the left, right, top or bottom of the rectangle bounding
the mesh. The function rectangular_cross automatically assigns
these tags to the boundary edges when it generates the mesh.

The tags provide the means to assign different boundary conditions
to an edge depending on which part of the boundary it belongs to.
(In Section Real Example we describe an example that
uses different boundary tags – in general, the possible tags are entirely
selectable by the user when generating the mesh and not
limited to ‘left’, ‘right’, ‘top’ and ‘bottom’ as in this example.)
All segments in bounding polygon must be tagged. If a tag is not supplied,
the default tag name exterior will be assigned by ANUGA.

Using the boundary objects described above, we assign a boundary
condition to each part of the boundary by means of a statement like:

domain.set_boundary({'left': Br, 'right': Bw, 'top': Br, 'bottom': Br})

It is critical that all tags are associated with a boundary condition in this statement.
If not the program will halt with a statement like:

Traceback (most recent call last):
File "mesh_test.py", line 114, in ?
 domain.set_boundary({'west': Bi, 'east': Bo, 'north': Br, 'south': Br})
File "X:\inundation\sandpits\onielsen\anuga_core\source\anuga\
 abstract_2d_finite_volumes\domain.py", line 505, in set_boundary
 raise msg
ERROR (domain.py): Tag "exterior" has not been bound to a boundary object.
All boundary tags defined in domain must appear in the supplied dictionary.
The tags are: ['ocean', 'east', 'north', 'exterior', 'south']

The command set_boundary stipulates that, in the current example, the right
boundary varies with time, as defined by the lambda function, while the other
boundaries are all reflective.

Evolution

The final statement:

for t in domain.evolve(yieldstep=0.1, duration=10.0):
 print domain.timestepping_statistics()

causes domain we have just setup to evolve, over a series of
steps indicated by the values of yieldstep and
duration, which can be altered as required (an alternative
to duration is finaltime) The value of
yieldstep provides the time interval between successive yields to the evolve loop.
Behind the scenes more inner time steps are generally taken.

By default, the current state of the evolution is stored a each yield step.

Time between output can also be controlled by
the argument outputstep which needs to an integer multiple of the yieldstep

Output

The output is a NetCDF file with the extension .sww. It
contains stage and momentum information and can be used with the
ANUGA viewer anuga_viewer to generate a visual
display.

Exploring the Model Output

The following figures are screenshots from the anuga viewer visualisation
tool anuga_viewer.

The first figure shows the domain
with water surface as specified by the initial condition, \(t=0\).

The second figure shows the flow at time \(t=2.3\) and the last figure
show the flow at time \(t=4\) where the system has been evolved
and the wave is encroaching on the previously dry bed.

Online documentation [https://anuga-viewer.readthedocs.io] is available
for the anuga_viewer

[image: ../_images/bedslopestart.jpg]

Runup example viewed at time 0.0 with the ANUGA viewer

[image: ../_images/bedslopeduring.jpg]

Runup example viewed at time 2.3 with the ANUGA viewer

[image: ../_images/bedslopeend.jpg]

Runup example viewed time 4.0 with the ANUGA viewer

Simple Notebook Example

Here we introduce the idea of creating a domain which contains the mesh and quantities needed to run the simulation, and encapsulates the methods for setting up the initial conditions, the boundary conditions and the method for evolving the solution.

Setup Notebook for Visualisation and Animation

We are using the format of a jupyter notebook. As such we need to setup inline matplotlib plotting and animation.

[10]:

import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

Allow inline jshtml animations
from matplotlib import rc
rc('animation', html='jshtml')

Import ANUGA

We assume that anuga has been installed. If so we can import anuga.

[11]:

import anuga

Create an ANUGA domain

A Domain is the core object which contains the mesh and the quantities for the particular problem. Here we create a simple rectangular Domain. We set the name to domain1 which will be used when storing the simulation output to a sww file called domain1.sww.

[12]:

domain1 = anuga.rectangular_cross_domain(40, 20, len1=20.0, len2=10.0)

domain1.set_name('domain1')
domain1.set_store_vertices_smoothly(False)

Plot Mesh

Let’s look at the mesh. We will use some code derived form the clawpack project to simplify plotting and animation of the output from our simulations. This is available via the animate module loaded from anuga.

The Domain_plotter class provides a plotting wrapper around our standard anuga Domain, providing simple access to the centroid values of our evolution quantities, stage, depth, elev, xmon and ymon and the triangulation triang.

Note: This visualisation is recommended for smaller domains (maybe up to 10,000 triangles). We have an anuga-viewer for larger domains.

[13]:

dplotter1 = anuga.Domain_plotter(domain1)
plt.triplot(dplotter1.triang, linewidth = 0.4);

Figure files for each frame will be stored in _plot

[image: ../_images/examples_notebook_simple_example_8_1.png]

Setup Initial Conditions

We have to setup the values of various quantities associated with the domain. In particular we need to setup the elevation the elevation of the bed or the bathymetry. In this case we will do this using a function.

[14]:

def topography(x, y):

 z = -x/10

 N = len(x)

 minx = np.floor(np.max(x)/4)
 wallx1 = np.min(x[(x >= minx)])
 wallx2 = np.min(x[(x > wallx1 + 0.25)])

 minx = np.floor(np.max(x)/2)
 wallx3 = np.min(x[(x >= minx)])
 wallx4 = np.min(x[(x > wallx3 + 0.25)])

 minx = np.floor(3*np.max(x)/4)
 wallx5 = np.min(x[(x >= minx)])
 wallx6 = np.min(x[(x > wallx5 + 0.25)])

 dist = 0.4 * (np.max(y) - np.min(y))

 for i in range(N):
 if wallx1 <= x[i] <= wallx2:
 if (y[i] < dist):
 z[i] += 1

 if wallx3 <= x[i] <= wallx4:
 if (y[i] > np.max(y) - dist):
 z[i] += 1

 if wallx5 <= x[i] <= wallx6:
 if (y[i] < dist):
 z[i] += 1

 return z

Set Quantities

Now we set the elevation, stage and friction using the domain.set_quantity function.

[15]:

domain1.set_quantity('elevation', topography, location='centroids') # Use function for elevation
domain1.set_quantity('friction', 0.01, location='centroids') # Constant friction
domain1.set_quantity('stage', expression='elevation', location='centroids') # Dry Bed

View Elevation

Let’s use the matplotlib function tripcolor to plot the elevation quantity. We access the domain mesh and elevation quantitiy via the dplotter interface.

[16]:

plt.tripcolor(dplotter1.triang,
 facecolors = dplotter1.elev,
 edgecolors='k',
 cmap='Greys_r')
plt.colorbar();

[image: ../_images/examples_notebook_simple_example_14_0.png]

Notice that we have been very careful to match up the defintion of the topography via the function topography with the resolution of the mesh.

Setup Boundary Conditions

The rectangular domain has 4 tagged boundaries, left, top, right and bottom. We need to set boundary conditons for each of these tagged boundaries. We can set Dirichlet_boundary type BC with specified values of stage, and x and y “momentum”. Another common BC is Reflective_boundary which mimics a wall.

[17]:

Bi = anuga.Dirichlet_boundary([0.4, 0, 0]) # Inflow
Bo = anuga.Dirichlet_boundary([-2, 0, 0]) # Outflow
Br = anuga.Reflective_boundary(domain1) # Solid reflective wall

domain1.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br})

Run the Evolution

We evolve using a for statement, which evolves the quantities using the ANUGA shallow water wave solver. The calculation yields every yieldstep seconds, for a given duration (or until a specified finaltime).

[18]:

for t in domain1.evolve(yieldstep=2, duration=40):

 #dplotter.plot_depth_frame()
 dplotter1.save_depth_frame(vmin=0.0,vmax=1.0)

 domain1.print_timestepping_statistics()

Read in the png files stored during the evolve loop
dplotter1.make_depth_animation()

Time = 0.0000 (sec), steps=0 (18s)
Time = 2.0000 (sec), delta t in [0.01779464, 0.03749219] (s), steps=93 (0s)
Time = 4.0000 (sec), delta t in [0.01523410, 0.01780455] (s), steps=123 (0s)
Time = 6.0000 (sec), delta t in [0.01509139, 0.01543878] (s), steps=132 (0s)
Time = 8.0000 (sec), delta t in [0.01543945, 0.01589701] (s), steps=129 (0s)
Time = 10.0000 (sec), delta t in [0.01510457, 0.01595656] (s), steps=129 (0s)
Time = 12.0000 (sec), delta t in [0.01448747, 0.01510270] (s), steps=136 (0s)
Time = 14.0000 (sec), delta t in [0.01416889, 0.01448641] (s), steps=140 (0s)
Time = 16.0000 (sec), delta t in [0.01390842, 0.01416679] (s), steps=143 (0s)
Time = 18.0000 (sec), delta t in [0.01381293, 0.01390783] (s), steps=145 (0s)
Time = 20.0000 (sec), delta t in [0.01356459, 0.01381284] (s), steps=147 (0s)
Time = 22.0000 (sec), delta t in [0.01337491, 0.01356424] (s), steps=149 (0s)
Time = 24.0000 (sec), delta t in [0.01312175, 0.01337337] (s), steps=152 (0s)
Time = 26.0000 (sec), delta t in [0.01302523, 0.01317617] (s), steps=153 (0s)
Time = 28.0000 (sec), delta t in [0.01288636, 0.01302421] (s), steps=155 (0s)
Time = 30.0000 (sec), delta t in [0.01274763, 0.01288612] (s), steps=156 (0s)
Time = 32.0000 (sec), delta t in [0.01265408, 0.01274647] (s), steps=158 (0s)
Time = 34.0000 (sec), delta t in [0.01260016, 0.01266082] (s), steps=159 (0s)
Time = 36.0000 (sec), delta t in [0.01259445, 0.01261115] (s), steps=159 (0s)
Time = 38.0000 (sec), delta t in [0.01257706, 0.01260399] (s), steps=159 (0s)
Time = 40.0000 (sec), delta t in [0.01254139, 0.01258247] (s), steps=160 (0s)

[18]